Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.259
1.
Sports Med Arthrosc Rev ; 32(1): 12-16, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38695498

Rotator cuff repair is usually successful, but retear is not uncommon. It has been previously identified that there is a higher incidence of apoptosis in the edges of the torn supraspinatus tendon. A prospective cohort study was conducted with 28 patients-14 rotator cuff tear patients, 5 instability patients, and 9 Anterior cruciate ligament reconstruction patients to determine whether there was any increase in several genes implicated in apoptosis, including Fas receptor (FasR), Fas ligand, Aifm-1, Bcl-2, Fadd, Bax, and caspase-3. There was a significant expression of Bax (P=0.2) and FasR (P=0.005) in the edges of torn supraspinatus tendons, and in intact subscapularis tendons, there was a significant expression of caspase-3 (P=0.02) compared with samples from the torn supraspinatus tendon (P=0.04). The cytochrome c pathway, with its subsequent activation of caspase-3, as well as the TRAIL-receptor signaling pathway involving FasR have both been implicated. The elevated expression of Bax supported the model that the Bax to Bcl-2 expression ratio represents a cell death switch. The elevated expression of Bax in the intact subscapularis tissue from rotator cuff tear patients also may confirm that tendinopathy is an ongoing molecular process.


Apoptosis , Rotator Cuff Injuries , Tendinopathy , Humans , Rotator Cuff Injuries/metabolism , Rotator Cuff Injuries/surgery , Rotator Cuff Injuries/pathology , Tendinopathy/pathology , Tendinopathy/metabolism , Prospective Studies , Male , bcl-2-Associated X Protein/metabolism , Female , fas Receptor/metabolism , Caspase 3/metabolism , Rotator Cuff/pathology , Rotator Cuff/metabolism , Middle Aged , Signal Transduction , Adult
2.
Cell Death Dis ; 15(5): 315, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704374

Autoimmune lymphoproliferative syndrome (ALPS) is a primary disorder of lymphocyte homeostasis, leading to chronic lymphoproliferation, autoimmune cytopenia, and increased risk of lymphoma. The genetic landscape of ALPS includes mutations in FAS, FASLG, and FADD, all associated with apoptosis deficiency, while the role of CASP10 defect in the disease remains debated. In this study, we aimed to assess the impact of CASP10 variants on ALPS pathogenesis. We benefit from thousands of genetic analysis datasets performed in our Institute's genetic platform to identify individuals carrying CASP10 variants previously suspected to be involved in ALPS outcome: p.C401LfsX15, p.V410I and p.Y446C, both at heterozygous and homozygous state. Clinical and laboratory features of the six included subjects were variable but not consistent with ALPS. Two individuals were healthy. Comprehensive analyses of CASP10 protein expression and FAS-mediated apoptosis were conducted and compared to healthy controls and ALPS patients with FAS mutations. Missense CASP10 variants (p.V410I and p.Y446C), which are common in the general population, did not disrupt CASP10 expression, nor FAS-mediated apoptosis. In contrast, homozygous p.C401LfsX15 CASP10 variant lead to a complete abolished CASP10 expression but had no impact on FAS-mediated apoptosis function. At heterozygous state, this p.C401LfsX15 variant lead to a reduced CASP10 protein levels but remained associated with a normal FAS-mediated apoptosis function. These findings demonstrate that CASPASE 10 is dispensable for FAS-mediated apoptosis. In consequences, CASP10 defect unlikely contribute to ALPS pathogenesis, since they did not result in an impairment of FAS-mediated apoptosis nor in clinical features of ALPS in human. Moreover, the absence of FAS expression up-regulation in subjects with CASP10 variants rule out any compensatory mechanisms possibly involved in the normal apoptosis function observed. In conclusion, this study challenges the notion that CASP10 variants contribute to the development of ALPS.


Apoptosis , Autoimmune Lymphoproliferative Syndrome , Caspase 10 , Mutation , fas Receptor , Humans , Caspase 10/genetics , Caspase 10/metabolism , Autoimmune Lymphoproliferative Syndrome/genetics , Male , Female , Mutation/genetics , Apoptosis/genetics , fas Receptor/genetics , fas Receptor/metabolism , Adult , Child , Adolescent , Middle Aged
3.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 164-168, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678607

This study aimed to explore the effects of miR-129-5p on inflammation and nucleus pulposus (NP) cell apoptosis in rats with intervertebral disc degeneration (IVDD) through the c-Jun N-terminal kinase (JNK) signaling pathway. A total of 20 rats were randomly divided into control group (n=10) or IVDD group (n=10). The mRNA expressions of miR-129-5p and apoptosis index Fas in IVDD tissues were determined using RT-PCR. NP cell apoptosis rate was detected via TUNEL assay. NP cells were extracted from IVDD tissues for primary culture. Subsequently, the cells were transfected with miR-129-5p inhibitor or mimic to inhibit or overexpress miR-129-5p, respectively. Furthermore, the changes in the JNK pathway indexes and apoptosis indexes were detected using Western blotting. In IVDD group, the expression of miR-129-5p was significantly down-regulated, while the transcriptional level of Fas was up-regulated compared with those in control group. Pearson correlation analysis revealed a negative correlation between the expressions of miR-129-5p and Fas mRNA (r=-0.75, P<0.05). IVDD group exhibited significantly higher levels of serum TNF-α, IL-6 and IL-1 than control group. Subsequent TUNEL assay indicated that the apoptosis rate was evidently higher in IVDD group (60.6%) than control group (2.5%). The results of Western blotting showed that the protein expressions of JNK1, JNK2 and Fas remarkably rose in IVDD group compared with those in control group. However, they declined remarkably in miR-129-5p mimic group compared with those in control group. Furthermore, such trends were significantly reversed in miR-129-5p inhibitor group. MiR-129-5p was significantly down-regulated in IVDD, whose overexpression has anti-inflammatory and anti-apoptotic effects.


Apoptosis , Inflammation , Intervertebral Disc Degeneration , MAP Kinase Signaling System , MicroRNAs , Nucleus Pulposus , Rats, Sprague-Dawley , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Apoptosis/genetics , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Inflammation/genetics , Inflammation/pathology , MAP Kinase Signaling System/genetics , Male , Rats , fas Receptor/genetics , fas Receptor/metabolism
4.
In Vivo ; 38(3): 1512-1518, 2024.
Article En | MEDLINE | ID: mdl-38688598

BACKGROUND/AIM: Progressive fibrosing interstitial lung disease (PF-ILD) refers to a group of chronic lung conditions commonly associated with immunoglobulin G4-related disorders. It is characterized by progressive scarring (fibrosis) within the pulmonary interstitium, resulting in respiratory failure and early mortality. Some patients do not respond to standard therapeutic interventions. Numerous studies have confirmed the anti-inflammatory and antioxidant properties of molecular hydrogen in various disease models. CASE REPORT: In this report, we present a case study of an 85-year-old female diagnosed with suspected IgG4-related PF-ILD complicated by hospital-acquired pneumonia. On the fourth day of hydrogen-assisted therapy, a noticeable improvement in lung infiltrations was observed in chest X-rays as the patient gradually progressed towards weaning off mechanical ventilation. To assess treatment responses, we compared immune phenotypes before and after hydrogen treatment. A marked increase was observed in resting regulatory T cell levels after treatment, accompanied by a notable decrease in Fas+ helper T cell and cytotoxic T cell subtypes. CONCLUSION: This case study highlights the effectiveness of hydrogen-assisted therapy in managing PF-ILD complicated by pneumonia, warranting further research in the future.


Hydrogen , Immunoglobulin G , Lung Diseases, Interstitial , T-Lymphocytes, Regulatory , Humans , Female , Aged, 80 and over , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/immunology , Lung Diseases, Interstitial/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , fas Receptor/metabolism , Treatment Outcome
5.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article En | MEDLINE | ID: mdl-38542202

Fas-associated death domain (FADD) is an adaptor protein that predominantly transduces the apoptosis signal from the death receptor (DR) to activate caspases, leading to the initiation of apoptotic signaling and the coordinated removal of damaged, infected, or unwanted cells. In addition to its apoptotic functions, FADD is involved in signaling pathways related to autophagy, cell proliferation, necroptosis, and cellular senescence, indicating its versatile role in cell survival and proliferation. The subcellular localization and intracellular expression of FADD play a crucial role in determining its functional outcomes, thereby highlighting the importance of spatiotemporal mechanisms and regulation. Furthermore, FADD has emerged as a key regulator of inflammatory signaling, contributing to immune responses and cellular homeostasis. This review provides a comprehensive summary and analysis of the cellular dynamics of FADD in regulating programmed cell death and inflammation through distinct molecular mechanisms associated with various signaling pathways.


Apoptosis , Neoplasms , Humans , Death Domain , Fas-Associated Death Domain Protein/metabolism , Apoptosis/physiology , fas Receptor/metabolism , Inflammation , Caspase 8/metabolism
6.
Chemistry ; 30(24): e202400120, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38363216

Controlled cell death is essential for the regulation of the immune system and plays a role in pathogen defense. It is often altered in pathogenic conditions such as cancer, viral infections and autoimmune diseases. The Fas receptor and its corresponding membrane-bound ligand (FasL) are part of the extrinsic apoptosis pathway activated in these cases. A soluble form of FasL (sFasL), produced by ectodomain shedding, displays a diverse but still elusive set of non-apoptotic functions and sometimes even serves as a pro-survival factor. To gather more knowledge about the characteristics of this protein and the impact N-glycosylations may have, access to homogeneous posttranslationally modified variants of sFasL is needed. Therefore, we developed a flexible strategy to obtain such homogeneously N-glycosylated variants of sFasL by applying chemical protein synthesis. This strategy can be flexibly combined with enzymatic methods to introduce more complex, site selective glycosylations.


Fas Ligand Protein , Apoptosis , Fas Ligand Protein/metabolism , Fas Ligand Protein/chemistry , fas Receptor/metabolism , fas Receptor/chemistry , Glycosylation , Protein Processing, Post-Translational , Solubility
7.
Endocrinology ; 165(2)2023 Dec 23.
Article En | MEDLINE | ID: mdl-38091978

Neutrophil gelatinase-associated lipocalin (NGAL), a siderophore-mediated iron binding protein, is highly expressed in human anaplastic thyroid carcinomas (ATCs) where it plays pleiotropic protumorigenic roles including that of a prosurvival protein. Here we show that NGAL inhibits FAS/CD95 death receptor to control ATC cell survival. FAS/CD95 expression in human specimens from patients with ATC and in ATC-derived cell lines negatively correlate with NGAL expression. Silencing of NGAL in ATC cells leads to FAS/CD95 upregulation, whereas NGAL overexpression determines the opposite effect. As a result, an agonist anti-FAS/CD95 antibody induces cell death in NGAL-silenced cells while it is ineffective on NGAL-overexpressing cells. Interestingly, the inhibitory activity of NGAL on FAS/CD95 is due to its iron carrier property given that perturbing iron homeostasis of NGAL-proficient and -deficient ATC cells directly influences FAS/CD95 expression. Accordingly, conditioned media containing a mutant form of NGAL unable to bind siderophores cannot rescue cells from FAS/CD95-dependent death, whereas NGAL wild type-containing conditioned media abolish the effects of the agonist antibody. We also find that downregulation of FAS/CD95 expression is mediated by iron-dependent NGAL suppression of p53 transcriptional activity. Our results indicate that NGAL contributes to ATC cell survival by iron-mediated inhibition of p53-dependent FAS/CD95 expression and suggest that restoring FAS/CD95 by NGAL suppression could be a helpful strategy to kill ATC cells.


Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Lipocalin-2/genetics , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Protein p53 , Cell Survival , Culture Media, Conditioned , Iron , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Apoptosis , fas Receptor/genetics , fas Receptor/metabolism
8.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 207-216, 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37953561

Evidences supported many food additives (FAs) possess toxicity to human health due to chronic excessive exposure. Global hygienic standards strictly limit the dosage of each FA and mixture of the same functional FAs. However, the synergetic effects caused by the combination of FAs with different functions require careful evaluation. In the present study, the content of each FA in beverages was determined by HPLC-UV-Vis detection. The cytotoxic effects of selected typical FAs alone or their combination were evaluated in human renal tubular epithelial cells. Mathematical Modeling and bioinformatics methods were employed to evaluate the toxicity of FAs and to predict the key target proteins of FAs on renal tubular cell toxicity, which were verified by western blot. The results indicated above 5 FAs were used in each surveyed beverage. The content of each FA and the respective ratios of the same functional FAs in each beverage did not exceed the maximum permitted level. But it was intensively shown that the significant synergistic cytotoxicity for the combination of FAs with lower concentration. The intercellular signaling transduction pathways including JNK/STAT, PI3P/AKT, and MAPK pathways, which could also be activated by PDGF signaling, were predicted to be involved in Fas-induced cytotoxicity. The increased expression of p-STAT3, p-JNK and p-AKT was associated with renal tubular injury. The current study implied the synergistic cytotoxic effect caused by multiple FAs at no toxic dosages via activated cellular transduction pathways regulating cell survival and apoptosis function, which warning of the synergistic toxic effects of different types of FAs.


Apoptosis , Proto-Oncogene Proteins c-akt , Humans , Blotting, Western , Epithelial Cells/metabolism , Beverages , fas Receptor/metabolism , Fas Ligand Protein
9.
Cell Death Differ ; 30(11): 2408-2431, 2023 11.
Article En | MEDLINE | ID: mdl-37838774

Receptor clustering is the most critical step to activate extrinsic apoptosis by death receptors belonging to the TNF superfamily. Although clinically unsuccessful, using agonist antibodies, the death receptors-5 remains extensively studied from a cancer therapeutics perspective. However, despite its regulatory role and elevated function in ovarian and other solid tumors, another tumor-enriched death receptor called Fas (CD95) remained undervalued in cancer immunotherapy until recently, when its role in off-target tumor killing by CAR-T therapies was imperative. By comprehensively analyzing structure studies in the context of the binding epitope of FasL and various preclinical Fas agonist antibodies, we characterize a highly significant patch of positively charged residue epitope (PPCR) in its cysteine-rich domain 2 of Fas. PPCR engagement is indispensable for superior Fas agonist signaling and CAR-T bystander function in ovarian tumor models. A single-point mutation in FasL or Fas that interferes with the PPCR engagement inhibited apoptotic signaling in tumor cells and T cells. Furthermore, considering that clinical and immunological features of the autoimmune lymphoproliferative syndrome (ALPS) are directly attributed to homozygous mutations in FasL, we reveal differential mechanistic details of FasL/Fas clustering at the PPCR interface compared to described ALPS mutations. As Fas-mediated bystander killing remains vital to the success of CAR-T therapies in tumors, our findings highlight the therapeutic analytical design for potentially effective Fas-targeting strategies using death agonism to improve cancer immunotherapy in ovarian and other solid tumors.


Ovarian Neoplasms , Receptors, Chimeric Antigen , Humans , Female , Epitopes , fas Receptor/genetics , fas Receptor/metabolism , Fas Ligand Protein , T-Lymphocytes , Ovarian Neoplasms/genetics , Ovarian Neoplasms/therapy , Apoptosis , Antibodies/pharmacology
10.
J Cell Mol Med ; 27(24): 4056-4068, 2023 12.
Article En | MEDLINE | ID: mdl-37855249

Periodontal bone regeneration using bone marrow mesenchymal stem cell (BMMSC) transplantation is a promising method; however, the method for osteogenic differentiation of BMMSCs needs to be improved. In this research, we sought to identify the roles of let-7a in the osteogenesis of BMMSCs and to provide a potential method for periodontal bone regeneration. Our previous study revealed that Fas/FasL is a target of let-7a. In this study, we demonstrated that let-7a overexpression significantly enhanced BMMSC-CAs osteogenesis both in vitro and in vivo. Mechanistically, upregulation of Fas/FasL using the rfas/rfaslg plasmid obstructed the osteogenesis of BMMSCs by inhibiting autophagy. Furthermore, we confirmed that overexpression of let-7a activated autophagy and alleviated the inhibited osteogenesis by the autophagy inhibitor 3-MA and the rfas/rfaslg plasmid of BMMSCs. In general, our findings showed that let-7a promoted the osteogenesis of BMMSCs through the Fas/FasL-autophagy pathway, suggesting that the application of let-7a in BMMSC-CAs based periodontal bone regeneration could be a promising strategy.


Bone Regeneration , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Animals , Rats , Bone Marrow Cells/metabolism , Bone Regeneration/genetics , Cell Differentiation/genetics , Cells, Cultured , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Up-Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Autophagy/genetics , fas Receptor/metabolism , Fas Ligand Protein/metabolism
11.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189004, 2023 11.
Article En | MEDLINE | ID: mdl-37865305

Although the interaction of CD95L (also known as FasL) with its so-called death receptor CD95 (Fas) induces an apoptotic signal responsible for the elimination of infected and cancer cells and maintenance of tissue homeostasis, this receptor can also implement non apoptotic signaling pathways. This latter signaling is involved in metastatic dissemination in certain cancers and the severity of auto-immune disorders. The signaling complexity of this pair is increased by the fact that CD95 expression itself seems to contribute to oncogenesis via a CD95L-independent manner and, that both ligand and receptor might interact with other partners modulating their pathophysiological functions. Finally, CD95L itself can trigger cell signaling in immune cells rendering complex the interpretation of mouse models in which CD95 or CD95L are knocked out. Herein, we discuss these non-canonical responses and their biological functions.


Apoptosis , Neoplasms , Animals , Mice , Fas Ligand Protein , fas Receptor/metabolism , Signal Transduction/physiology
12.
Int J Mol Sci ; 24(15)2023 Jul 29.
Article En | MEDLINE | ID: mdl-37569529

Osteosarcoma is the most frequent primary malignant bone tumor with an annual incidence of about 400 cases in the United States. Osteosarcoma primarily metastasizes to the lungs, where FAS ligand (FASL) is constitutively expressed. The interaction of FASL and its cell surface receptor, FAS, triggers apoptosis in normal cells; however, this function is altered in cancer cells. DNA methylation has previously been explored as a mechanism for altering FAS expression, but no variability was identified in the CpG island (CGI) overlapping the promoter. Analysis of an expanded region, including CGI shores and shelves, revealed high variability in the methylation of certain CpG sites that correlated significantly with FAS mRNA expression in a negative manner. Bisulfite sequencing revealed additional CpG sites, which were highly methylated in the metastatic LM7 cell line but unmethylated in its parental non-metastatic SaOS-2 cell line. Treatment with the demethylating agent, 5-azacytidine, resulted in a loss of methylation in CpG sites located within the FAS promoter and restored FAS protein expression in LM7 cells, resulting in reduced migration. Orthotopic implantation of 5-azacytidine treated LM7 cells into severe combined immunodeficient mice led to decreased lung metastases. These results suggest that DNA methylation of CGI shore sites may regulate FAS expression and constitute a potential target for osteosarcoma therapy, utilizing demethylating agents currently approved for the treatment of other cancers.


Bone Neoplasms , Osteosarcoma , Mice , Animals , fas Receptor/genetics , fas Receptor/metabolism , Bone Neoplasms/metabolism , Osteosarcoma/metabolism , Azacitidine/pharmacology , DNA Methylation , CpG Islands , Cell Line, Tumor
13.
J Reprod Immunol ; 158: 103970, 2023 08.
Article En | MEDLINE | ID: mdl-37263030

Lipopolysaccharide (LPS) triggers infectious acute inflammation, and interleukin (IL)-18 is an inflammasome-mediated cytokine. We previously demonstrated that endogenous IL-18 induces testicular germ cell apoptosis during acute inflammation when plasma IL-18 levels are high. Additionally, high-dose recombinant IL-18 (rIL-18) induced Leydig cell apoptosis. The blood-testis barrier formed by Sertoli cells protects testicular germ cells from both exogenous and endogenous harmful substances. However, the impact of LPS and IL-18 on Sertoli cells remained unclear. We stimulated TM4 cells, a mouse Sertoli cell line, with LPS (200 or 1000 ng/mL) or rIL-18 (0.1-100 ng/mL) at levels that induced Leydig cell apoptosis in our previous study and assessed caspase 3 cleavage and the mRNA expression of inflammatory cytokines and markers of apoptotic pathways (Tnfr1, Fasl, Fas, Fadd) after stimulation. Il6 mRNA was increased by LPS stimulation. Tnfα mRNA was increased by 200 ng/mL LPS but not 1000 ng/mL LPS. Fas was increased, but Fasl was decreased, by LPS. LPS had little influence on Tnfr1 or Fadd mRNA expression and did not induce apoptosis. Il18 mRNA was not increased, and Il18r1 was significantly decreased following LPS treatment. Treatment with rIL-18 increased Il18r1 mRNA and induced inflammation, but decreased Tnfr1 and had little influence on apoptosis, as indicated by Tnfα, Fasl, Fas, Fadd and cleaved caspase 3. These results suggested that Sertoli cells do not easily undergo apoptosis despite strong inflammatory stimuli. Additionally, Sertoli cells may resist inflammation and play a larger role in protecting testicular homeostasis than other component cells of the testis.


Lipopolysaccharides , Sertoli Cells , Male , Mice , Animals , Sertoli Cells/metabolism , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Caspase 3/metabolism , Interleukin-18/metabolism , Apoptosis , Cytokines/metabolism , Signal Transduction , Inflammation/chemically induced , Inflammation/metabolism , fas Receptor/genetics , fas Receptor/metabolism
14.
BMC Immunol ; 24(1): 12, 2023 06 23.
Article En | MEDLINE | ID: mdl-37353767

BACKGROUND: Patients with Sjögren's syndrome, like other patients with autoimmune disorders, display dysregulation in the function of their immune system. Fas and Fas Ligand (FasL) are among the dysregulated proteins. METHODS: We studied Fas and FasL on IL-2Rα+ cells and in serum of patients with Sjögren's syndrome (n = 16) and healthy individuals (n = 16); both from same ethnic and geographical background. We used flow cytometry and enzyme-linked immunosorbent for this purpose. We also measured the expression of Bcl-2 and Bax by reverse transcription quantitative real-time PCR (RT-qPCR) and percentage of apoptotic and dead cells using Annexin V and 7-AAD staining in lymphocytes. RESULTS: FasL was increased in patients' T and B cells while Fas was increased in patients' monocytes, T and B cells. No signs of increased apoptosis were found. sFas and sFasL in patients' serum were increased, although the increase in sFasL was not significant. We suspect an effect of non-steroidal anti-inflammatory therapy on B cells, explaining the decrease of the percentage Fas+ B cells found within our samples. In healthy individuals, there was a noticeable pattern in the expression of FasL which mutually correlated to populations of mononuclear cells; this correlation was absent in the patients with Sjögren's syndrome. CONCLUSIONS: Mononuclear cells expressing IL-2Rα+ had upregulated Fas in Sjögren's syndrome. However, the rate of apoptosis based on Annexin V staining and the Bcl-2/Bax expression was not observed in mononuclear cells. We suspect a functional role of abnormal levels of Fas and FasL which has not been cleared yet.


Autoimmune Diseases , Sjogren's Syndrome , Humans , Annexin A5 , Interleukin-2 Receptor alpha Subunit/metabolism , bcl-2-Associated X Protein/metabolism , Apoptosis , fas Receptor/metabolism
15.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article En | MEDLINE | ID: mdl-37047053

Chronic asymptomatic orchitis (CAO) is a common cause of acquired non-obstructive azoospermia in dogs. To understand the impact and mode of action of apoptosis, we investigated TUNEL, Bax, Bcl-2, Fas/Fas ligand, and caspase 3/8/9 in testicular biopsies of CAO-affected dogs and compared the results to undisturbed spermatogenesis in healthy males (CG). TUNEL+ cells were significantly increased in CAO, correlating with the disturbance of spermatogenesis. Bcl-2, Bax (p < 0.01 each), caspase 9 (p < 0.05), Fas, caspase 8 (p < 0.01 each), and caspase 3 (p < 0.05) were significantly increased at the mRNA level, whereas FasL expression was downregulated. Cleaved caspase 3 staining was sporadic in CAO but not in CG. Sertoli cells, some peritubular (CAO/CG) and interstitial immune cells (CAO) stained Bcl-2+, with significantly more immunopositive cells in both compartments in CAO compared to CG. Bcl-2 and CD20 co-expressing B lymphocytes were encountered interstitially and in CAO occasionally also found intratubally, underlining their contribution to the maintenance of CAO. Our results support the crucial role of the intrinsic and extrinsic apoptotic pathways in the pathophysiology of canine CAO. Autoprotective Bcl-2 expression in Sertoli cells and B lymphocytes seems to be functional, however, thereby also maintaining and promoting the disease by immune cell activation.


Azoospermia , Orchitis , Humans , Male , Dogs , Animals , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Orchitis/veterinary , Orchitis/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis/genetics , Fas Ligand Protein/metabolism , fas Receptor/metabolism
16.
Eur Rev Med Pharmacol Sci ; 27(4): 1681-1688, 2023 02.
Article En | MEDLINE | ID: mdl-36876702

OBJECTIVE: In this study, the effects of cell adhesion, inflammation and apoptotic changes on fetal development in cases of COVID-19 placenta were investigated. PATIENTS AND METHODS: Placenta tissue samples from 15 COVID-19 and 15 healthy pregnant women were taken after delivery. Tissue samples were fixed in formaldehyde, then blocked with paraffin wax and 4-6 µm thick sections were cut and stained with Harris Hematoxylene-Eosin. Sections were stained with FAS antibody and endothelial nitric oxide synthase (eNOS) antibody. RESULTS: In COVID-19 placenta section, deterioration of the root villus basement membrane structure in the maternal region, decidua cells and syncytial cell degeneration, significant increase in fibrinoid tissue, endothelial dysfunction in free villi and intense congestion in blood vessels, increase in syncytial nodes and bridges were observed. In terms of inflammation, eNOS expression was increased in Hoffbauer cells, dilated blood vessels endothelial cells in chorionic villi, and surrounding inflammatory cells. Positive FAS expression was also increased in the basement membranes of root and free villi, syncytial bridge and nodes, and endothelial cells. CONCLUSIONS: The effect of COVID-19 caused an increase in eNOS activity and acceleration of the proapoptotic process and the deterioration of cell-membrane adhesion.


COVID-19 , Nitric Oxide Synthase Type III , fas Receptor , Female , Humans , Pregnancy , COVID-19/metabolism , Endothelial Cells , Nitric Oxide Synthase Type III/metabolism , Placenta/metabolism , fas Receptor/metabolism , Cell Adhesion , Inflammation , Apoptosis
17.
Biochem Soc Trans ; 51(1): 21-29, 2023 02 27.
Article En | MEDLINE | ID: mdl-36629505

The role of CD95/Fas ligand (CD95L/FasL) in the induction of CD95-mediated extrinsic apoptosis is well characterized. Trimerized, membrane-bound CD95L ligates the CD95 receptor activating downstream signaling resulting in the execution of cells by caspase proteins. However, the expression of CD95L has been reported to induce cell death in contexts in which this pathway is unlikely to be activated, such as in cell autonomous activation induced cell death (AICD) and in CD95-resistant cancer cell lines. Recent data suggests that the CD95L mRNA exerts toxicity through death induced by survival gene elimination (DISE). DISE results from the targeting of networks of survival genes by toxic short RNA (sRNA)s in the RNA-induced silencing complex (RISC). CD95L mRNA contributes to this death directly, through the processing of its mRNA into toxic sRNAs that are loaded into the RISC, and indirectly, by promoting the loading of other toxic sRNAs. Interestingly, CD95L is not the only mRNA that is processed and loaded into the RISC. Protein-coding mRNAs involved in protein translation are also selectively loaded. We propose a model in which networks of mRNA-derived sRNAs modulate DISE, with networks of genes providing non-toxic RISC substrate sRNAs that protect against DISE, and opposing networks of stress-activated genes that produce toxic RISC substrate sRNAs that promote DISE.


Apoptosis , fas Receptor , Fas Ligand Protein/genetics , Fas Ligand Protein/metabolism , fas Receptor/metabolism , Apoptosis/physiology , Caspases , RNA, Messenger/genetics
18.
Probiotics Antimicrob Proteins ; 15(5): 1234-1249, 2023 10.
Article En | MEDLINE | ID: mdl-35995910

Intestinal microecology was closely related to immune regulation, but the related mechanism was still unclear. This study aimed to reveal how microorganisms improved immune response via casepase-3 and Bak of FAS/CD95 pathway. Bifidobacterium animalis F1-7 inhibited the melanoma B16-F10 cells in vitro effectively; had a potent anticancer effect of lung cancer mice; effectively improved the spleen immune index and CD3+ (75.8%) and CD8+ (19.8%) expression level; strengthened the phagocytosis of macrophages; inhibited the overexpression of inflammatory factors IL-6 (319.10 ± 2.46 pg/mL), IL-8 (383.05 ± 9.87 pg/mL), and TNF-α (2003.40 ± 11.42 pg/mL); and promoted the expression of anti-inflammatory factor IL-10 (406.00 ± 3.59 pg/mL). This process was achieved by promoting caspase-8/3 and BH3-interacting domain death agonist (Bid), Bak genes, and protein expression. This study confirmed the B. animalis F1-7 could act as an effective activator to regulate immune response by promoting the expression of caspase-8/3, Bid and Bak genes, and proteins and by activating the FAS/CD95 pathway. Our study provided a data support for the application of potentially beneficial microorganisms of B. animalis F1-7 as an effective activator to improve immunity.


Apoptosis , Bifidobacterium animalis , Mice , Animals , Caspase 8/genetics , Caspase 8/metabolism , Caspase 8/pharmacology , Signal Transduction/physiology , fas Receptor/genetics , fas Receptor/metabolism , Immunity
19.
J Neurooncol ; 160(2): 299-310, 2022 Nov.
Article En | MEDLINE | ID: mdl-36355258

PURPOSE: Glioblastoma is the most common brain tumor in adults and is virtually incurable. Therefore, new therapeutic strategies are urgently needed. Over the last decade, multiple growth-promoting functions have been attributed to CD95, a prototypic death receptor well characterized as an apoptosis mediator upon CD95L engagement. Strategic targeting of non-apoptotic or apoptotic CD95 signaling may hold anti-glioblastoma potential. Due to its antithetic nature, understanding the constitutive role of CD95 signaling in glioblastoma is indispensable. METHODS: We abrogated constitutive Cd95 and Cd95l gene expression by CRISPR/Cas9 in murine glioma models and characterized the consequences of gene deletion in vitro and in vivo. RESULTS: Expression of canonical CD95 but not CD95L was identified in mouse glioma cells in vitro. Instead, a soluble isoform-encoding non-canonical Cd95l transcript variant was detected. In vivo, an upregulation of the membrane-bound canonical CD95L form was revealed. Cd95 or Cd95l gene deletion decreased cell growth in vitro. The growth-supporting role of constitutive CD95 signaling was validated by Cd95 re-transfection, which rescued growth. In vivo, Cd95 or Cd95l gene deletion prolonged survival involving tumor-intrinsic and immunological mechanisms in the SMA-497 model. In the GL-261 model, that expresses no CD95, only CD95L gene deletion prolonged survival, involving a tumor-intrinsic mechanism. CONCLUSION: Non-canonical CD95L/CD95 interactions are growth-promoting in murine glioma models, and glioma growth and immunosuppression may be simultaneously counteracted by Cd95l gene silencing.


Brain Neoplasms , Glioblastoma , Glioma , Animals , Mice , Apoptosis/physiology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , CRISPR-Cas Systems , Fas Ligand Protein/genetics , Fas Ligand Protein/metabolism , fas Receptor/genetics , fas Receptor/metabolism , Glioblastoma/metabolism , Glioblastoma/pathology , Glioma/metabolism , Glioma/pathology , Immunosuppression Therapy
20.
Int Immunopharmacol ; 113(Pt A): 109298, 2022 Dec.
Article En | MEDLINE | ID: mdl-36252485

Hashimoto's thyroiditis (HT) is an organ-specific autoimmune disease, that eventually lead to hypothyroidism. XBP1s is an endoplasmic reticulum stress related protein and participates in the pathogenesis of several diseases. Nevertheless, the potential role of XBP1s in amiodarone (AMIO)-treated HT patients remains unknown. In this study, AMIO aggravated the endoplasmic reticulum stress responses in HT patients and thyroid epithelial follicular cells. Moreover, MTT assay and flow cytometry analysis revealed that knockdown of XBP1s suppressed AMIO-induced thyroid epithelial follicular cells apoptosis. Mechanically, the Chromatin Immunoprecipitation (ChIP) and luciferase activity assay proved that XBP1s enhanced LINC00842 expression in HT patients and thyroid epithelial follicular cells via binding to LINC00842 promoter. LINC00842 functioned as a miR-214 sponge in HT patients and thyroid epithelial follicular cells. Besides, LINC00842 up-regulated Fas ligand (FASL) expression via inhibition of miR-214. In rescue experiments, overexpression of FASL reversed shXBP1s-induced suppression of cell apoptosis in AMIO-treated thyroid epithelial follicular cells. These findings concluded that AMIO-drove XBP1s aggravated endoplasmic reticulum stress and apoptosis in HT via modulating LINC00842/miR-214/FASL axis, providing a new sight for the therapeutic strategy of AMIO-induced HT.


Amiodarone , Hashimoto Disease , MicroRNAs , RNA, Long Noncoding , X-Box Binding Protein 1 , Humans , Amiodarone/pharmacology , Amiodarone/therapeutic use , Apoptosis , Endoplasmic Reticulum Stress/genetics , Fas Ligand Protein/metabolism , fas Receptor/metabolism , Hashimoto Disease/metabolism , MicroRNAs/genetics , X-Box Binding Protein 1/genetics , RNA, Long Noncoding/genetics
...